LFA 467 HyperFlash® – Light Flash Apparatus

LFA 467 HyperFlash® – Light Flash Apparatus

New Dimensions in the Measurement of Thermal Diffusivity and Conductivity – Fast, Simple, Economical

Broadest temperature range available, from -100°C to 500°C
With a single instrument setup – that is, without having to swap out either the detector or the furnace – the LFA 467 HyperFlash® can carry out measurements from -100°C to 500°C. Coupled with the broadest range of accessories available on the market, the instrument opens the door to completely new dimensions in the determination of thermophysical properties.

Sample throughput up to 4 times higher due to sample holder for 16 samples

One unique advantage of the LFA 467 HyperFlash® is its ability to simultaneously measure up to 16 samples over the entire temperature range. This allows for maximum sample throughput with a minimum input of operational time and effort.
Refill systems are available for automatic refilling of the Dewar on both the detector and the furnace, allowing uninterrupted operation of the LFA system around the clock.

ZoomOptics for more precise measurement results without measurement errors
The patented ZoomOptics system (patent no.: DE 10 2012 106 955 B4  2014.04.03) optimizes the field of view of the detector, thus eliminating any influences caused by aperture stops. The result is a significant increase in the precision of the measurement results.

Ultra-fast recording of measurement data for thin samples (2 MHz)

Thin films and high-conductivity materials require a very high data acquisition rate for the precise recording of rapid temperature increases on a sample’s upper surface. The LFA 467 HyperFlash® offers a sampling rate of 2 MHz – an unprecedented value for LFA systems.


Key Technical Data

Key Technical Data

(subject to change)

  • Temperature range:
    -100°C to 500°C,
    with only one single furnace
  • Contactless measurement of the temperature increase with IR detector
  • Data acquisition rate:
    up to 2 MHz (for both thermal curve and pulse mapping)
  • Measuring range thermal diffusivity:
    0.01 mm2/s to 2000 mm2/s
  • Measuring range thermal conductivity:
    < 0.1 W/(m*K) to 4000 W/(m*K)
  • Sample dimensions:
    • 6 mm to 25.4 mm diameter
    • 0.01 mm to 6 mm thickness
  • Patented pulse mapping technique
    for pulse length correction and improved cp determination
  • Compliant to and in accordance with:
    ASTM E1461, ASTM E2585, DIN EN 821-2, DIN 30905, ISO 22007-4, ISO 18755, ISO 13826; DIN EN 1159-2, etc.
Schematic of the LFA 467 HyperFlash; the light beam heats the lower sample surface and an IR detector measures the temperature increase on the upper sample surfaceSchematic of the LFA 467 HyperFlash®;
the light beam heats the lower sample surface and an IR detector measures the temperature increase on the upper sample surface


ZoomOptics for more Precise Measurement Results without Measurement Errors

Generally, the area on the sample’s upper surface being scanned by the detector is customized to fit to the maximum sample size up to 25.4 mm. Samples with a smaller diameter are most often covered with a mask or a cap to hide peripheral zones to the greatest extent possible. Since all bodies, however, emit infrared radiation – i.e., even the masking or capping material – the resulting detector signal is inevitably influenced. The extent to which this influence is noticeable depends on the difference in thermal diffusivity between the sample and the mask/cap material. The result – in the final segment of the main temperature rise – can be either a further continuous increase or a premature leveling of the detector signal. In either case, a shift of the evaluated half time occurs, thus falsifying the calculated thermal diffusivity.   

ZoomOptics (patent no.: DE 10 2012 106 955 B4  2014.04.03) allows the detector’s field of view to be adjusted until the only temperature increase registered is that of the sample and no influences by the surroundings or mask can have any effect. The pre-set focus value – which covers most applications – is 70%; however, this value can also be individually adjusted by the operator to the given sample geometry. 

The advantage of ZoomOptics is clearly illustrated by the following example measurement on Pyroceram:

Thermal diffusivity resultsThermal diffusivity results
Standard sample holder for 4 round samples, Ø 12.7 mm eachStandard sample holder for 4 round samples, Ø 12.7 mm each
Standard sample holder for 1 round sample, Ø 25.4 mmStandard sample holder for 1 round sample,
Ø 25.4 mm
Sample holder for lamellar samplesSample holder for lamellar samples
Pressure sample holderPressure sample holder
Holder for samples with low viscosity and polymer meltsHolder for samples with low viscosity and
polymer melts
In-plane sample holderIn-plane sample holder


Digital Media

Digital Media



You may also be interested in:

LFA 467 HT HyperFlash® – Light Flash Apparatus

The LFA 467 HT HyperFlash® allows for accurate thermal diffusivity and thermal conductivity measurements between RT and 1250°C with the smallest footprint on the market. The Ultra-fast sampling rate and extremely short pulse widths enable measurements of thin and highly conductive materials.

HFM 446 Lambda Eco-Line

The new HFM 446 Lambda Eco-Line features a standardized method for the measurement of thermal conductivity which is equally applicable in research and development and in quality assurance.

GHP 456 Titan®

Innovative Guarded Hot Plate System GHP 456 Titan® for Determination of Thermal Conductivity of Insulations